Measurement of Transition Form Factor of η meson with WASA detector at COSY

Himani Bhatt
For WASA - at - COSY Collaboration,
IIT Bombay, India

, Transition Form Factor
, Experimental Set-up
, Analysis for $\eta \rightarrow e^{+} e^{-} \gamma$

- Background studies
- Kinematic studies
- Preliminary Results
, Summary and outlook

Introduction

- How quarks and gluons are confined inside the nucleon ?
- The study of phenomenological characteristics of hadrons should lead to better understanding of QCD .
\longrightarrow Transition Form Factor
- Transition Form Factor $F\left(q^{2}\right)$ is defined as :

$$
\frac{d \Gamma}{d q^{2}}=\left|\frac{d \Gamma}{d q^{2}}\right|_{\text {pointlike }}\left|F\left(q^{2}\right)\right|^{2}
$$

where, $\left|\mathrm{d} \Gamma / \mathrm{dq}^{2}\right|$ is experimentally measured and $\left|\mathrm{d} \Gamma / \mathrm{dq}^{2}\right|_{\text {poinlike }}$ is the theoretically calculated transition probability for a point like meson.

- One can use the Dalitz decay of $\eta \rightarrow \gamma^{*} \gamma \rightarrow 1^{+} 1^{-} \gamma$.

$$
q^{2}=m_{l^{+} l^{-}}^{2}
$$

Transition Form Factor

- Vector Meson Dominance Model (VMD) describes the q^{2} dependency of the transition form factor. (L. G. Landsberg, Phys. Rep. 128, 301(1985))

$$
F^{V D M}\left(q^{2}\right)=\sum_{V} \frac{g^{\prime{ }_{P V \gamma}}}{2 g_{V \gamma}} \frac{M_{V}^{2}}{M_{V}^{2}-q^{2}}
$$

- The transition form factor of a scalar meson is parameterized using the pole approximation

$$
F=\frac{1}{1-\frac{q^{2}}{\Lambda^{2}}} \approx 1+\frac{q^{2}}{\Lambda^{2}}
$$

- Additionally one can determine the slope of the transition form factor

$$
b_{\eta}=\left.\frac{d F_{\eta}}{d q^{2}}\right|_{q^{2}=0}=\frac{1}{\Lambda^{2}}
$$

Transition Form Factor

Earlier results by investigating the Dalitz decays : $\eta \rightarrow e^{+} e^{-\gamma}$ and $\eta \rightarrow \mu^{+} \mu \gamma$

Experiments	$b_{\eta} / \mathrm{GeV}^{-2}$
Lepton-G 1	1.9 ± 0.04
NA60	
SND 3	$1.95 \pm 0.17 \pm 0.05$
HADES 4	1.6 ± 2.0

$V D M$ predicts $b_{\eta}=1.8 \mathrm{GeV}^{-2}$

Hence the measurements also test VMD

1 R. Djeliadin, et al., Phys. Lett. B 94 (1980) 548.
2. R. Arnaldi et. al , Phys. Lett .B 677(2009), 260-266).
3. M.N. Achsov et. al. , Phys. Lett. B 504 (2001) 275 -281
4. B. Spruck, GSI Scientific Report, 2008

- WASA (Wide Angle Shower Apparatus) at COSY (Juelich , Germany)is a 4π detector
- Data analyzed with reaction :
$\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta}\left(\mathrm{e}^{+} \mathrm{e}^{-} \gamma\right)$, at beam kinetic energy 1.4 GeV .

Analysis

, Event Selection for Dalitz decay ($\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta} \rightarrow \mathrm{pp} \mathrm{e}^{+} \mathrm{e}^{-\gamma}$).

- Two charged tracks in FD
- Two charged tracks in CD having opposite charge
- One neutral track in CD with $\mathrm{E}_{\text {dep }}>180 \mathrm{MeV}$
- Invariant Mass is obtained by summing the reconstructed masses of the decay products of η meson ($\mathrm{e}^{+}, \mathrm{e}^{-}, \gamma$).
. Missing Mass is obtained as following:

$$
M M_{p p}^{2}=\left(E_{\text {beam }}-E_{p_{1}}-E_{p_{2}}\right)^{2}-\left(\vec{p}_{\text {beam }}-\vec{p}_{p_{1}}-\vec{p}_{p_{2}}\right)^{2}
$$

where, E_{p} and \vec{p} are energy and momentum of scattered proton.

Simulations studies

10^{7} events generated using Pluto event generator.

Channel	Cross section
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$	6.8×10^{-5}
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	4.68×10^{-4}
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	2.2×10^{-3}
$\eta \rightarrow \gamma \gamma$	3.9×10^{-3}
$p p \rightarrow p p \pi^{+} \pi^{-} \pi^{0}$	0.02
$p p \rightarrow p p \pi^{+} \pi^{-}$	1
cross section of signal and background.	

$\mathrm{S} / \mathrm{B}=0.0005$

Invariant Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Analysis

Data from the production run April 07

Total $10^{7} \eta$ produced

Kinematic studies

Conditions are used to suppress the background coming from direct pion production

Scattering angle of η in the lab system.

\square	$\eta \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \gamma$
\square	$\mathbf{p p} \rightarrow \mathbf{p p} \pi^{+} \pi^{-} \pi^{0}$
\square	$\mathbf{p p} \rightarrow \mathbf{p p} \pi^{+} \pi^{-}$

Phi angle diff. between photon and lepton pair in the lab system.

Kinematic studies

Conditions are used to suppress the pion background coming from η decays

Opening angle between photon and lepton pair in the lab system

Opening angle between photon and electron in the lab system
with these conditions
$\eta \rightarrow \gamma \gamma$ cannot be eliminated

Edep / P ratio

Suppression of $\eta \rightarrow \gamma \gamma$

$\Rightarrow \eta \rightarrow \gamma \gamma$ reaction contributes as background due to external conversion of one of the photon at beam pipe.
\Rightarrow An orientation angle $\left(\Phi_{\mathrm{V}}\right)^{*}$ of plane of e^{+}and e^{-}with respect to magnetic field has been calculated.

* PhD Dissertation by Torsten Dahms (Stony Brook University for PHENIX) , 2008

Preliminary Results

After conditions

Selection Criteria

Criteria	Range
$M M_{\eta}$	1.80 to 2.0 GeV
$E d e p / P$	0.7 to 1.3
$\theta_{\gamma^{*}}$	1.4 to 2.2 rad
$\Delta \Phi_{\gamma^{*}}$	135° to 220°
ϕ_{V}	$>1.2 \mathrm{rad}$
$\theta_{\gamma e}$	75^{0} to 140^{0}
$\theta \eta$	$<30^{\circ}$

Preliminary Results

270 ± 18 Dalitz's events with in 3σ

Summary and outlook

\Rightarrow Large amount of pion background has been removed successfully.
$\Rightarrow 270 \pm 18, \eta$ - Dalitz events have been reconstructed .

- For further cleaning the data, use of kinematic fitting is being investigated.
- To increase the statistics we are analyzing new pp data taken in Oct-2008.

Fa 2

Suppression of $\eta \rightarrow \gamma \gamma$

Angular orientation of the plane \boldsymbol{v} (vector product of $\boldsymbol{p}_{e_{+}}$and $\boldsymbol{p}_{e_{-}}$) define as follows:

$$
\Phi_{V}=\cos ^{-1}\left(\frac{\vec{w} \cdot \vec{u}_{a}}{|\vec{w}| \vec{u}_{a} \mid}\right)
$$

where, $\vec{u}=\frac{\vec{p}_{e^{+}}+\vec{p}_{e^{-}}}{\vec{p}_{e^{+}}+\vec{p}_{e^{-}} \mid}$is the apparent decay plane of the conversion pair.

$$
\vec{v}=\vec{p}_{e^{+}} \times \vec{p}_{e^{-}} \quad, \quad \vec{w}=\vec{u} \times \vec{v} \quad \text { and } \quad \overrightarrow{\boldsymbol{u}}_{a}=\frac{\overrightarrow{\boldsymbol{u}} \times \hat{z}}{|\overrightarrow{\boldsymbol{u}} \times \hat{z}|}
$$

